Showing posts with label quantum effects. Show all posts
Showing posts with label quantum effects. Show all posts

Oct 26, 2021

conference paper reached 400 reads

conference paper reached 400 reads

Bucher, M., J-M. Sallese, F. Krummenacher, D. Kazazis, C. Lallement, W. Grabinski, and C. Enz
EKV 3.0: An analog design-oriented MOS transistor model
In 9th International Conference on Mixed Design of Integrated Circuits and Systems
(MIXDES 2002)

Abstract:  The EKV 3.0 compact MOS transistor model for advanced analog IC design and simulation is presented. The model is based on the surface potential approach combined with inversion charge linearization. The ideal long-channel model is coherent  for  static  and  dynamic  aspects  including  noise.  The  ideal  model  is  extended  for  high-field  effects  in  deep submicron CMOS technologies. Scalability over channel length and width is achieved while retaining a reduced number of parameters. The EKV 3.0 model is applicable over a large range of CMOS technologies.  

Fig: Normalized source transconductance to current ratio (gm/ID) vs. normalized current, measured 
(markers) in saturation from various CMOS technologies, and analytical model.


Dec 12, 2016

[Fellowship] Physics Based Modeling Simulation and Electrical Characterization

Physics Based Modeling Simulation and Electrical Characterization 
of Quantum Effects in Multigate MOSFETs
[DRDO Fellowship]

Dr. Vimala Palanichamy is looking for Junior Research Fellowship (INR 25000 Stipend per Month) for this project funded by Defense Research and Development Organization (DRDO), Government of India. Please refer below advertisement for applying for Junior Research Fellowship for working on the project: 

Jun 8, 2010

Physicists from Mainz University develop a quantum interface between light and atoms



Ultra-thin glass fiber enables the controlled coupling of light and matter / publication in Physical Review Letters:

E. Vetsch, D. Reitz, G. Sagué, R. Schmidt, S. T. Dawkins, and A. Rauschenbeutel
Optical interface created by laser-cooled atoms trapped in the evanescent field surround-ing an optical nanofiber
Physical Review Letters, May 21, 2010
DOI: 10.1103/PhysRevLett.104.203603

Nov 3, 2009

A paper in Thin Solid Films

I've found a paper that may interest you:

The quantum size effects on the surface potential of nano-crystalline silicon thin film transistors

Ling-Feng Mao

(Available online 29 October 2009)

Abstract

The impact of the grain size of nc-Si (nano-crystalline silicon) on the surface potential of doped nc-Si TFTs (thin film transistors) is discussed. Quantum size effects cause the change in both band-gap and dielectric constant of nc-Si. Numerical calculation of the surface potential in nc-Si TFTs shows that the diameter of nc-Si has a larger effect on the surface potential of nc-Si TFTs. The results demonstrate that, for medium size (7 ~ 50 nm), the change in the band-gap of nc-Si should be considered, whereas, for small size (< 7 nm), the change in the dielectric constant of nc-Si should be considered. A simplified surface potential equation for nc-Si TFTs under strong inversion condition is proposed, and shows good agreement with the original equation via numerical calculation.


Have fun!