Showing posts with label measurements. Show all posts
Showing posts with label measurements. Show all posts

Jan 31, 2024

[paper] THz Measurements, Antennas, and Simulations

Fawad Sheikh 1, Andreas Prokscha 1, Johannes M. Eckhardt 2, Tobias Doeker 2, Naveed A. Abbasi 3, Jorge Gomez-Ponce 3,4, Benedikt Sievert 5, Jan Taro Svejda 5, Andreas Rennings 5, Jan Barowski 6, Christian Schulz 6, Ilona Rolfes 6, Daniel Erni 5, Andreas F. Molisch 3, Thomas Kürner 2, and Thomas Kaiser 1
THz Measurements, Antennas, and Simulations: From the Past to the Future
Invited Paper in IEEE Journal of Microwaves, vol. 3, no. 1, pp. 289-304, Jan. 2023
DOI: 10.1109/JMW.2022.3216210

1 Institute of Digital Signal Processing, UDE, Duisburg (D)
2 Institute for Communications Technology, TU Braunschweig (D)
3 Wireless Devices and Systems Group, University of Southern California, Los Angeles (USA) 
4 ESPOL, Facultad de Ingeniería en Electricidad y Computación, Guayaquil (EC)
5 ATE, University of Duisburg-Essen, and CENIDE Duisburg (D)
6 Institute of Microwave Systems, Ruhr University, Bochum (D)

Abstract: In recent years, terahertz (THz) systems have become an increasingly popular area of research thanks to their unique properties such as extremely high data rates towards Tb/s, submillimeter localization accuracy, high resolution remote sensing of materials, and remarkable advances in photonics and electronics technologies. This article traces the progress of the THz measurements, antennas and simulations, from historical milestones to the current state of research and provides an outlook on the remaining challenges.

FIG: Realized gain measurement of the integrated antenna prototype compared to the estimation of the corresponding equivalent circuit (EC) model in E- and H-plane at 290GHz (a)
and micrograph of the antenna prototype (b)

AcknowledgmentThis work was supported in part by Deutsche Forschungsgemeinschaft for Projects M01, M02, M03, M04, C05, and S03, under Project 287022738 TRR 196, in part by the Ministry of Culture and Science of the State of North Rhine-Westphalia (MKW NRW) through Project terahertz.NRW, and in part by the Open Access Publication Fund of the University of Duisburg-Essen. The work of Jorge Gomez-Ponce was supported by Foreign Fulbright Ecuador SENESCYT Program. The work of Johannes M. Eckhardt, Tobias Doeker, and Thomas Kürner was supported in part by the Federal Ministry of Education and Research (BMBF), Germany, through 6G Research and Innovation Cluster 6G-RIC under Grant 16KISK031 and in part by German Research Foundation (DFG) under Grant FOR 2863, “Meteracom - Metrology for THz Communications.” The work of Jorge Gomez-Ponce, Naveed A. Abbasi, and Andreas F. Molisch was supported by SRC, DARPA, NSF, NIST, and Samsung Research America through ComSenTer Program. This work did not involve human subjects nor animals in its research.


Nov 1, 2023

[paper] Cryogenic Devices for Quantum Technologies

Jorge Pérez-Bailón, Miguel Tarancón, Santiago Celma, and Carlos Sánchez-Azqueta
Cryogenic Measurement of CMOS Devices for Quantum Technologies
IEEE Transactions on Instrumentation and Measurement (2023)

Quantum Materials and Devices (Q-MAD) Group
Institute of Nanoscience and Materials of Aragón (INMA),
Group of Electronic Design (GDE), University of Zaragoza (SP)

Abstract: In this article we present the experimental characterization of active components of a standard 65nm CMOS technology for a temperature range from 313 to 5K, analyzing the variation of the main parameters over temperature and voltage, recovering their main parameters (threshold voltage Vth, transconductance Gm and channel conductance GDS). The measurement has been carried out wire-bonding the bare dies with the devices to a dedicated printed circuit board (PCB) that has been placed inside a dilution refrigerator. The ID-VDS curves for both NMOS and PMOS transistors shows an increase of ID in the cryogenic regime that is more relevant for high values of VGS because for lower values it is partially compensated by the variation of Vth. Also, a kink is observed in these curves for high VDS values, caused by the bulk current generated by impact ionization at the drain combined with the increased resistivity of the frozen-out substrate. The transconductance Gm reaches non-zero values for higher VGS as T decreases, and then peaks to higher values in the cryogenic regime. In turn, GDS increases for increasing T, following the behavior observed for ID. Both results are in accordance with other thermal characterizations carried out on CMOS transistors in different technologies.

Fig: Detail of the IC in the measurement setup to fit into the cryostat

Aknowlegemetns: This work was supported in part by the Spanish Ministry of Science and Innovation under Grant PID2020-114110RA-I00; and in part by the CSIC Program for the Spanish Recovery, Transformation and Resilience Plan funded by the Recovery and Resilience Facility of the European Union, established by the Regulation (EU) 2020/2094 under Grant 20219PT007