Showing posts with label DEVSIM. Show all posts
Showing posts with label DEVSIM. Show all posts

Jan 29, 2024

List of the publications using or referring to DEVSIM

List of the publications using or referring to DEVSIM
[1] K. Wang et al.; Design and simulation of a novel 4H-SiC LGAD timing device; Radiation detection technology and methods; (2023) https://doi.org/10.1007/s41605-023-00431-y
[2] J. Lauwaert; Technology computer aided design based deep level transient spectra: Simulation of high-purity germanium crystals; Journal of Physics D: Applied Physics; (2022) https://doi.org/10.1088/1361-6463/ac34ad
[3] Q. Chen et al.; Analytical model for donor like Gaussian traps in organic thin-film transistor; Organic Electronics; (2021) https://doi.org/10.1016/j.orgel.2022.106464
[4] Q. Chen et al.; The Impact of Contact Position on the Retention Performance in Thin-Film Ferroelectric Transistors; Physica Status Solidi A; (2021) https://doi.org/10.1002/pssa.202100408
[5] L. Hulbert; Designing a Simulator for an Electrically-Pumped Organic Laser Diode; Master’s Thesis; (2019) https://doi.org/10.15368/theses.2019.60
[6] J. E. Sanchez and Q. Chen; Element Edge Based Discretization for TCAD Device Simulation; IEEE Transactions on Electron Devices; (2021) https://doi.org/10.1109/TED.2021.3094776
[7] J. Lauwaert; Fill Factor Loss in a Recombination Junction for Monolithic Tandem Solar Cells; ACS Appl. Energy Mater.; (2023) https://doi.org/10.1021/acsaem.3c00041
[8] J. E. Sanchez; DEVSIM: A TCAD Semiconductor Device Simulator; Journal of Open Source Software; (2022) https://doi.org/10.21105/joss.03898
[9] L. Rickert et al.; High-performance designs for fiber-pigtailed quantum-light sources based on quantum dots in electrically-controlled circular Bragg gratings; Optics Express; (2023) https://doi.org/10.1364/OE.486060
[10] L. R. Brennaman & A. J. Samin; Insights into the performance of InAs-based devices in extreme environments from multiscale simulations; Applied Physics A; (2023) https://doi.org/10.1007/s00339-023-06756-1
[11] M. D. K Jones et al.; Modelling Interfaces in Thin-Film Photovoltaic Devices; Frontiers in Chemistry; (2022) https://doi.org/10.3389/fchem.2022.920676
[12] R. Sellers et al.; fabrication and modeling study to reduce valence band offset in HgCdTe MWIR nBn photodetectors grown on silicon using superlattice barriers; Proc. SPIE PC12687, Infrared Sensors, Devices, and Applications XIII,; (2023) https://doi.org/10.1117/12.2677394
[13] TANG Zhenglai and CAO Bingyang ; Simulations of self-heating effects and the heat generation mechanisms in SOI-MOS devices; Microelectronics & Computer; (2023) https://doi.org/10.19304/J.ISSN1000-7180.2023.0630
[14] Kotecha et al.; Modeling Needs for Power Semiconductor Devices and Power Electronics Systems; IEDM (2019) (2019) https://doi.org/10.1109/IEDM19573.2019.8993449

Jan 15, 2024

DEVSIM as TCAD mobile app

DEVSIM: TCAD mobile app


Now through January 18, 2024, the TCAD app is free for download. After this, you will be entitled to any free future updates [read more...]

  • App is renamed to “TCAD app”
  • Impact ionization model added
  • Menus updated
  • Easier plot navigation
  • Series resistance available to aid in impact ionization model results
  • Stop simulation and keep partial results to stop long-running simulation early

Get it on Google Play Download on the App Store

Oct 30, 2023

[paper] DEVSIM

Sanchez, J. E.,
DEVSIM: A TCAD Semiconductor Device Simulator
Journal of Open Source Software, 7(70), 3898, (2022).
DOI:10.21105/joss.03898

Abstract: DEVSIM is technology computer-aided design (TCAD) software for semiconductor device simulation. By solving the equations for electric fields and current flow, it simulates the electrical behavior of semiconductor devices, such as transistors. It can be used to model existing, fabricated devices for calibration purposes. It is also possible to explore novel device structures and exotic materials, reducing the number of costly and time-consuming manufacturing iterations While DEVSIM has limited capabilities for the creation of 1-D and 2-D meshes, the Pythoninterface allows the import of mesh structures from any format using a triangular representation (in 2-D) or a tetrahedral representation (in 3-D). This makes it possible for the user to utilize high quality open source meshing solutions.

FIG: 90-nm 3-D MOSFET. The polysilicon gate (2) is surrounded by oxide (5) and two nitride regions (3) and (4). The bulk region (1) has a 120nm drawn gate length. The source and drain contacts are both 50 nm underneath the nitride regions. A body contact was placed on the bottom of the 60nm silicon region. The oxide thickness is 4.9 nm and the device is 25nm thick.


Mar 10, 2014

website http://www.tcad.com is up and running

The www.tcad.com website promoting open source Technology Computer Aided Design and posting related news is up and running. Among other news there is also update of the DEVSIM Open Source TCAD Simulator which is available for download at SourceForge, now.  Packages are available for:
  • Mac OS X Mavericks
  • Red Hat 6.5
  • Ubuntu 12.04
For more information about the project, including source code availability, please visit DEVSIM webpage. Additional resource are also available at the TCADCentral 

[source]