Advances in Compact Modeling of Organic Field-Effect Transistors
Sungyeop Jung1, Member, IEEE, Yvan Bonnassieux2, Gilles Horowitz2, Sungjune Jung1, Member, IEEE, Benjamin IƱiguez3, Fellow, IEEE, and Chang-Hyun Kim4, Senior Member, IEEE
IEEE J-EDS (Early Access)
DOI: 10.1109/JEDS.2020.3020312
1Future IT Innovation Laboratory and Department of Creative IT Engineering, Pohang University of Science and Technology, Pohang 37673, South Korea.
2LPICM, Ecole Polytechinque, CNRS, 91128 Palaiseau, France.
3DEEEA, Universitat Rovira i Virgili, Tarragona 43007, Spain.
4Department of Electronic Engineering, Gachon University, Seongnam 13120, South Korea
Abstract: In this review, recent advances in compact modeling of organic field-effect transistors (OFETs) are presented. Despite the inherent strength for printed flexible electronics and the extremely aggressive research conducted over more than three decades, the OFET technology still seems to remain at a relatively low technological readiness level. Among various possible reasons for that, the lack of a standard compact model, which effectively bridges the device- and system-level development, is clearly one of the most critical issues. This paper broadly discusses the essential requirements, up-to-date progresses, and imminent challenges for the OFET compact device modeling toward a universal, physically valid, and applicable description of this fast-developing technology.
Figure (a) Cross-sectional illustration and (b) circuit diagram with multi-component overlap capacitances of the printed 3-D organic complementary inverter, and (c) measured and simulated transient output voltage of an 11-stage ring oscillator.
No comments:
Post a Comment