Jan 11, 2021

[paper] Neuromuscular Junction‐on‐a‐Chip

Rianne de Jongh1, Xandor M. Spijkers1,2, Svetlana Pasteuning‐Vuhman1
Paul Vulto2 R. Jeroen Pasterkamp1
Neuromuscular Junction‐on‐a‐Chip: 
ALS disease modeling and read‐out development in microfluidic devices
Journal of Neurochemistry 
Open Access 31 December 2020
DOI: 10.1111/jnc.15289 

1 Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands.
2 Mimetas B.V., Organ-on-a-chip Company, Leiden, The Netherlands

Abstract: Amyotrophic lateral sclerosis (ALS) is a fatal and progressive neurodegenerative disease affecting upper and lower motor neurons with no cure available. Clinical and animal studies reveal that the neuromuscular junction (NMJ), a synaptic connection between motor neurons and skeletal muscle fibers, is highly vulnerable in ALS and suggest that NMJ defects may occur at early stages of the disease. However, mechanistic insight into how NMJ dysfunction relates to the onset and progression of ALS is incomplete, which hampers therapy development. This is, in part, caused by a lack of robust in vitro models. The ability to combine microfluidic and induced pluripotent stem cell (iPSC) technologies has opened up new avenues for studying molecular and cellular ALS phenotypes in vitro. Microfluidic devices offer several advantages over traditional culture approaches when modeling the NMJ, such as the spatial separation of different cell types and increased control over the cellular microenvironment. Moreover, they are compatible with 3D cell culture, which enhances NMJ functionality and maturity. Here, we review how microfluidic technology is currently being employed to develop more reliable in vitro NMJ models. To validate and phenotype such models, various morphological and functional read‐outs have been developed. We describe and discuss the relevance of these read‐outs and specifically illustrate how these read‐outs have enhanced our understanding of NMJ pathology in ALS. Finally, we share our view on potential future directions and challenges.

FIG: Overview of some of the morphological and functional read-outs that can be used
in NMJ-on-a-chip models for studying ALS disease mechanisms. 

Acknowledgements: We thank Dr. Ewout Groen and Prof. Eran Perlson for carefully reading the manuscript, and Frederik Schavemaker for help with preparing the Figures. Work in the laboratory of R.J.P. is supported by the ALS Stichting Nederland (TOTALS, ALS-on-a-Chip) and by the MAXOMOD and INTEGRALS consortia under the frame of E-Rare-3, the ERANet for Research on Rare Diseases.

#Intel Talks With #TSMC, #Samsung to Outsource Some Chip #semi Production https://t.co/nMJIjXsben https://t.co/u8mpOgXf6R



from Twitter https://twitter.com/wladek60

January 11, 2021 at 10:10AM
via IFTTT

Jan 8, 2021

Low-power #MEMS #microphone https://t.co/A6tcnAt4km #semi https://t.co/CSEfyDEsgm



from Twitter https://twitter.com/wladek60

January 08, 2021 at 02:23PM
via IFTTT

[C4P] Spintronics-Devices and Circuits

Call for Papers for a Special Issue of 
IEEE Transactions on Electron Devices on
Spintronics-Devices and Circuits
Submission deadline: 30 September, 2021 
Publication date: April 2022

Spintronics is one of the emerging fields for the next-generation nanoscale devices offering better memory and processing capabilities with improved performance levels. It demonstrates great potential in the post-Moore era. Ever since the discovery of Giant Magneto-Resistance (GMR) effect in 1988, spintronics has shown rapid progress. Recent advances have expanded this technology to the entire electronics industry of sensors, memories, oscillators, quantum information processors, computer architecture, brain inspired computing and various other fields. Spintronics is now one of the most researched areas and is on the verge of becoming a mainstream technology. A hard disk drive (HDD) invented by IBM in 1956, now has a global market revenue of approximately $12bn. Other emerging field of application for this technology is magnetic field sensors that showcased a market revenue of ~$19b in 2018. The magnetic memory production at major foundries such as Samsung, Globalfoundries, Western Digital and TSMC marks the adoption of spintronics technology. However, in order to meet the ever-increasing demands of the industry, innovation in terms of modeling, design, materials, processes, circuits and applications are required. This Special Issue of the IEEE Transactions on Electron Devices will feature the most recent developments and the state-of-the-art in the field of spintronic devices, circuits and new architectures for high performance.

Topics of interest include, but are not limited to:
Materials:
Ferromagnets, Antiferromagnets, 2D material for better spin manipulation and spin logic devices, Heusler alloys, dilute magnetic semiconductors (DMS), half-metallic ferromagnet (HMF)
Transport mechanism:
Spin accumulation, injection and detection in spin devices, spin pumping techniques, angular momentum transportation by spin polarized currents, spin waves, magnons, spin hall effect, spin transfer torque, enhancement in spin diffusion length and coherence time
Spintronics devices:
STT-MRAM, SOT-MRAM, VCMA-MRAM, domain-wall, skyrmions, nano-oscillators, sensors etc. Low power and high-speed switching schemes for spintronic devices.
Optoelectronics and Spintronics:
All-optical switching of magnetization, inverse magnetooptical effects, single shot optical switching, modeling circuit and architecture level design for ultra-fast laser excitation
Memories:
High storage density MRAM, enhancement in power efficiency and speed
In-memory computing:
Spintronics based in-memory computing/ processing circuits/architectures and applications
Quantum Computing:
Quantum information processing, protocol for communication, computation and sensing, algorithms, spin qubit, systems and applications, spintronics-based quantum memories
Neuromorphic computing:
Hardware implementation of neural networks, analog and digital, architectures and applications
Fabrication:
Fabrication and characterization of novel materials and devices, hybrid spintronics integration and fabrication
Spintronics based circuits:
Reconfigurable and programmable spintronics based circuits, Security applications including RNG and PUF, ADC/DAC, reliability and power performance analysis of spintronics based devices and circuits

Submission instructions: Please visit the following link to download the templates:
http://www.ieee.org/publications_standards/publications/authors/author_templates.html
In your cover letter, please indicate that your submission is for this special issue.
Submission site: https://mc.manuscriptcentral.com/ted

The papers must present original material that has not been copyrighted, published or accepted
for publications in any other archival publications, that is not currently being considered for
publications elsewhere, and that will not be submitted elsewhere while under considerations
by the Transactions on Electron Devices.

Guest Editors:
1. Prof. Brajesh Kumar Kaushik, Department of Electronics and Communication Engineering, Indian Institute of Technology Roorkee, INDIA (Lead Guest Editor)
2. Dr. Sanjeev Aggarwal, Everspin Technologies Inc., USA
3. Prof. Supriyo Bandyopadhyay, Department of Electrical and Computer Engineering, VCU College of Engineering, USA
4. Prof. Debanjan Bhowmik, Department of Electrical Engineering, Indian Institute of Technology Delhi, INDIA
5. Dr. Vivek De, Circuits Research Lab, Intel, USA
6. Dr. Bernard Dieny, SPINTEC, IRIG/CEA Grenoble, FRANCE
7. Prof. Wang Kang, School of Microelectronics, Beihang University, CHINA
8. Prof. S.N. Piramanayagam, School of Physical & Mathematical Sciences - Division of Physics & Applied Physics, Nanyang Technological University, SINGAPORE
9. Prof. Kaushik Roy, School of Electrical and Computer Engineering, Purdue
University, USA
10. Prof. Ashwin A. Tulapukur, Department of Electrical Engineering, Indian Institute of Technology Bombay, INDIA