The 2007 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD) will be held this year in Vienna (Sept 25-27 2007), organized by TU-Wien (Technische Universität Wien). SISPAD is considered one of the top conference on device and process simulation.
You can find all the information in:
www.sispad.org
The topics of SISPAD include all kinds of modeling techniques.
I want to remark that, according to the CFP, one of the topics is "Compact device modeling for circuit simulation".
For compact model developers, SISPAD can be a very attractive forum to present new developments and results, and to interact with researchers working in numerical and predictive process and device simulation.
Besides, there are two interesting companion workshops:
1) Workshop on Electromigration Reliability (Sept 24)
2) Workshop on Organic Electronics (Sept 28)
Of course, it is also a good opportunity to enjoy the wonderful city of Vienna!
Feb 8, 2007
How many angels can dance on top of a pin?
Two weeks ago I was in Rome, in the ITC. As you can guess from the title, I had a quite interesting, but byzantine, discussion. I was presenting a paper (with B. Iniguez, M. Shur and some other people) about a universal procedure to model TFT. The core idea of the procedure is using a compact model to model an intrinsic device, and then model all the rest of the parasitic elements as lumped elements. The other guy was telling me that this is not physical. Obviously, I don't agree. Moreover, I think that using lumped elements is near as physical as it can get.
My point is: it is OK trying to put everything inside your equations. However, this usually leads to a loss of insight on what is happening in the field-effect device. I think it is better to model the device with as much accuracy as possible and without losing the insight, and then add as many elements as necessary as lumped elements. Thus, the resulting model will have a quite straight physical representation, easy to grasp by intuition, and will not lose precision due to any approximation. Moreover, the simulator will handle quite effectively the model, because it has been programed to do so. Probably, it will even behave better, because the equations will be easier to handle.
Anyway, it is only my opinion, and there are some argements in the other side that I'll discuss another day.
My point is: it is OK trying to put everything inside your equations. However, this usually leads to a loss of insight on what is happening in the field-effect device. I think it is better to model the device with as much accuracy as possible and without losing the insight, and then add as many elements as necessary as lumped elements. Thus, the resulting model will have a quite straight physical representation, easy to grasp by intuition, and will not lose precision due to any approximation. Moreover, the simulator will handle quite effectively the model, because it has been programed to do so. Probably, it will even behave better, because the equations will be easier to handle.
Anyway, it is only my opinion, and there are some argements in the other side that I'll discuss another day.
Feb 6, 2007
RF Simulators
I've seen that Agilent Technologies announces a breakthrough in high-frequency SPICE simulation technology for high-speed digital board design. It seems that they have just realized that simulation in the frequency domain is faster than that in time domain. I don't grasp the novelty of the news, because they have been doing so for a long time. However, the point I'd like to make is that a good model for RF design not only has to be accurate, etc.... but it also has to take into account the possibility of being used in a simulator oriented to frequency.
It seems then that in a good model to be used in an RF environment, we should be careful enough as to explicitly state the equations for the S parameters, and not only for the capacitances. Thus, we should present both versions of the model: one with the capacitances, and another one with the S-parameters. It would be then a question of choosing the most appropriate set of equations to simulate.
It seems then that in a good model to be used in an RF environment, we should be careful enough as to explicitly state the equations for the S parameters, and not only for the capacitances. Thus, we should present both versions of the model: one with the capacitances, and another one with the S-parameters. It would be then a question of choosing the most appropriate set of equations to simulate.
Feb 5, 2007
Back to work
Here I am, back to real world after two weeks of conferences. I must confess that I'm happy to be at home again. Well, to the point. The last one of the conferences was a bit disappointing, because it was mainly dedicated to solar cells in the oral sessions. This is so because it was organized by the Solar Energy Institute. The poster sessions were more interesting, with many different topics, though the only ones dedicated to compact modeling were some posters from B. Iñiguez and Toni Lazaro, dedicated mainly to double gate and RF modeling. Quite interesting, even if they didn't win the best paper award (by the way, only five of the six awards went to people related to the organizers).
Another poster I was happy to see was one about pi-gate FETs, where they were modeling the transistor using some device simulator. The funny thing was to see the double threshold effect, with some explanantions about it.
Another poster I was happy to see was one about pi-gate FETs, where they were modeling the transistor using some device simulator. The funny thing was to see the double threshold effect, with some explanantions about it.
Jan 31, 2007
IET (former IEE) Award
Today I've learnt that the Institution of Engineering and Technology has awarded the Circuits, Devices and Systems Premium, to B. Iniguez, J. Deen and O. Marinov, for the paper “Charge Transport in Organic and Polymer Thin-Film Transistors: Recent Issues”.
Congratulations!
Congratulations!
Subscribe to:
Posts (Atom)