May 11, 2020

[paper] BSIM-HV: High-Voltage MOSFET Model

H. Agarwal , Member, IEEE, C. Gupta , Graduate Student Member, IEEE, R. Goel , Graduate Student Member, IEEE, P. Kushwaha , Member, IEEE, Y.-K. Lin , Graduate Student Member, IEEE, M.-Y. Kao , Graduate Student Member, IEEE, J.-P. Duarte , Graduate Student Member, IEEE, H.-L. Chang , Member, IEEE, Y. S. Chauhan , Senior Member, IEEE, S. Salahuddin, Fellow, IEEE, and C. Hu, Life Fellow, IEEE
BSIM-HV: High-Voltage MOSFET Model Including Quasi-Saturation and Self-Heating Effect
IEEE TED, vol. 66, no. 10, pp. 4258-4263, Oct. 2019
doi: 10.1109/TED.2019.2933611

Abstract - A BSIM-based compact model for a high-voltage MOSFET is presented. The model uses the BSIM-BULK (formerly BSIM6) model at its core, which has been extended to include the overlap capacitance due to the drift region as well as quasi-saturation effect. The model is symmetric and continuous, is validated with the TCAD simulations and experimental 35- and 90V LDMOS and 40V VDMOS transistors, and shows excellent agreement.
FIG: Schematic of the LDMOS. Lightly doped n-region constitutes the drain. Majority of the applied drain voltage drops across this region, which protects the intrinsic transistor region from breakdown.
Manuscript received March 3, 2019; revised May 23, 2019 and July 24, 2019; accepted July 31, 2019. Date of publication August 26, 2019; date of current version September 20, 2019. This work was supported in part by the members of the Berkeley Center for Negative Capacitance Technology and the members of the Berkeley Device Modeling Center. The review of this article was arranged by Editor B. IƱiguez.

No comments:

Post a Comment