Apr 10, 2025

[paper] Ferroelectric MOSFET

Jean-Michel Sallese and Vincent Meyer
The Ferroelectric MOSFET: A Self-Consistent Quasi-Static Model and its Implications
IEEE transactions on electron devices 51, no. 12 (2004): 2145-2153
DOI: 10.1109/TED.2004.839113

Abstract: We report a new approach to modeling the metal-ferroelectric-insulator field-effect transistor (MFIS-FET) that leads to a physical understanding of the device in quasi-static operation. Compared to previous works, the local state of the ferroelectric layer is calculated self-consistently along the channel, without assuming any predefined hysteresis path. Further, this approach gives a consistent description of the MFIS-FET in all regions of operation, and predicts the unexpected situation where both inversion and accumulation coexist in the channel. When external voltages are varied simultaneously, we show that both current and polarizations are sensitive to the correlation between the gate, source, and drain potentials. Finally, basic derivation of analytical relations for overall MFIS-FET optimization is discussed.

Fig: Schematic description of the ferroelectric MOSFET and evolution of the ferroelectric polarization along the channel as function of the gate voltage when the device operates at low VDS (in linear mode). The progression of the gate potential is indicated by the arrows. The ferroelectric saturated loop is also plotted for clarity (dash-dotted).

Acknowledgment: The authors would like to thank C. McAndrew for his constructive comments on the manuscript.

No comments:

Post a Comment