Nov 2, 2023

[paper] ChipNeMo

Mingjie Liu, Teo Ene, Robert Kirby, Chris Cheng, Nathaniel Pinckney, Rongjian LiangJonah Alben, Himyanshu Anand, Sanmitra Banerjee, Ismet Bayraktaroglu, Bonita Bhaskaran Bryan Catanzaro, Arjun Chaudhuri, Sharon Clay, Bill Dally, Laura Dang, Parikshit Deshpande Siddhanth Dhodhi, Sameer Halepete, Eric Hill, Jiashang Hu, Sumit Jain, Brucek Khailany Kishor Kunal, Xiaowei Li, Hao Liu, Stuart Oberman, Sujeet Omar, Sreedhar Pratty, Ambar Sarkar Zhengjiang Shao, Hanfei Sun, Pratik P Suthar, Varun Tej, Kaizhe Xu, Haoxing Ren
ChipNeMo: Domain-Adapted LLMs for Chip Design
arXiv:2311.00176 [cs.CL]
DOI: 10.48550/arXiv.2311.00176

* NVIDIA

Abstract: ChipNeMo aims to explore the applications of large language models (LLMs) for industrial chip design. Instead of directly deploying off-the-shelf commercial or open-source LLMs, we instead adopt the following domain adaptation techniques: custom tokenizers, domain-adaptive continued pretraining, supervised fine-tuning (SFT) with domain-specific instructions, and domain-adapted retrieval models. We evaluate these methods on three selected LLM applications for chip design: an engineering assistant chatbot, EDA script generation, and bug summarization and analysis. Our results show that these domain adaptation techniques enable significant LLM performance improvements over general-purpose base models across the three evaluated applications, enabling up to 5x model size reduction with similar or better performance on a range of design tasks. Our findings also indicate that there’s still room for improvement between our current results and ideal outcomes. We believe that further investigation of domain-adapted LLM approaches will help close this gap in the future.
Fig: LLM script generator integration with EDA tools

Acknowledgements: The authors would like to thank: NVIDIA IT teams for their support on NVBugs integration; NVIDIA Hardware Security team for their support on security issues; NVIDIA NeMo teams for their support and guidance on training and inference of ChipNeMo models; NVIDIA Infrastructure teams for supporting the GPU training and inference resources for the project; NVIDIA Hardware design teams for their support and insight.

No comments:

Post a Comment