Micro and Nanoelectronics Devices, Circuits and Systems
Select Proceedings of MNDCS 2023
Part of the book series: Lecture Notes in Electrical Engineering (LNEE, volume 1067) DOI: 10.1007/978-981-99-4495-8
Editors: Trupti Ranjan Lenka, Samar K. Saha, Lan Fu
This book presents select proceedings of the International Conference on Micro and Nanoelectronics Devices, Circuits and Systems (MNDCS-2023). The book includes cutting-edge research papers in the emerging fields of micro and nanoelectronics devices, circuits, and systems from experts working in these fields over the last decade. The book is a unique collection of chapters from different areas with a common theme and is immensely useful to academic researchers and practitioners in the industry who work in this field.
Oscillator for adiabatic computational circuitry (US11671054)
ReplyDeleteGranted Patent | Granted on: 2023-06-06
Abstract
An adiabatic resonator, an adiabatic oscillator, and an adiabatic oscillator system are disclosed. An adiabatic system is one that ideally transfers no heat outside of the system, thereby reducing the required operating power. The adiabatic resonator, which includes a plurality of tank circuits, acts as an energy reservoir, the missing aspect of previously attempted adiabatic computational systems. By using the adiabatic resonator as a feedback element with an amplifier, an adiabatic oscillator is formed. An adiabatic oscillator system is formed with a primary adiabatic oscillator feeding a plurality of secondary adiabatic oscillators. In this manner, the adiabatic oscillator system may be used to generate the multiple clock signals required of adiabatic computational logic elements, such as Split-level Charge Recovery Logic and 2-Level Adiabatic Logic. The adiabatic oscillator system stores enough energy to drive many individual adiabatic computational logic elements, permitting implementation of complex logic circuits
Oscillator for adiabatic computational circuitry (US11671054)
ReplyDeleteGranted Patent | Granted on: 2023-06-06
AbstractOscillator for adiabatic computational circuitry (US11671054)
Granted Patent | Granted on: 2023-06-06
Abstract
An adiabatic resonator, an adiabatic oscillator, and an adiabatic oscillator system are disclosed. An adiabatic system is one that ideally transfers no heat outside of the system, thereby reducing the required operating power. The adiabatic resonator, which includes a plurality of tank circuits, acts as an energy reservoir, the missing aspect of previously attempted adiabatic computational systems. By using the adiabatic resonator as a feedback element with an amplifier, an adiabatic oscillator is formed. An adiabatic oscillator system is formed with a primary adiabatic oscillator feeding a plurality of secondary adiabatic oscillators. In this manner, the adiabatic oscillator system may be used to generate the multiple clock signals required of adiabatic computational logic elements, such as Split-level Charge Recovery Logic and 2-Level Adiabatic Logic. The adiabatic oscillator system stores enough energy to drive many individual adiabatic computational logic elements, permitting implementation of complex logic circuits
An adiabatic resonator, an adiabatic oscillator, and an adiabatic oscillator system are disclosed. An adiabatic system is one that ideally transfers no heat outside of the system, thereby reducing the required operating power. The adiabatic resonator, which includes a plurality of tank circuits, acts as an energy reservoir, the missing aspect of previously attempted adiabatic computational systems. By using the adiabatic resonator as a feedback element with an amplifier, an adiabatic oscillator is formed. An adiabatic oscillator system is formed with a primary adiabatic oscillator feeding a plurality of secondary adiabatic oscillators. In this manner, the adiabatic oscillator system may be used to generate the multiple clock signals required of adiabatic computational logic elements, such as Split-level Charge Recovery Logic and 2-Level Adiabatic Logic. The adiabatic oscillator system stores enough energy to drive many individual adiabatic computational logic elements, permitting implementation of complex logic circuits