May 30, 2023

[PhD Thesis] Digital-based analog processing in nanoscale CMOS ICs for IoT applications

Digital-based analog processing in nanoscale CMOS ICs for IoT applications
http://hdl.handle.net/10183/249786
PhD Cadndiate: Pedro Filipe Leite Correia De Toledo
Universidade Federal do Rio Grande do Sul. Instituto de Informática
Programa de Pós-Graduação em Microeletrônica.
Advisor: Klimach, Hamilton Duarte
Co-advisor: Crovetti, Paolo Stefano

Abstract: The Internet-of-Things (IoT) concept has been opening up a variety of applications, such as urban and environmental monitoring, smart health, surveillance, and home automation. Most of these IoT applications require more and more power/area efficient Complemen ary Metal–Oxide–Semiconductor (CMOS) systems and faster prototypes (lower time-to market), demanding special modifications in the current IoT design system bottleneck: the analog/RF interfaces. Specially after the 2000s, it is evident that there have been significant improvements in CMOS digital circuits when compared to analog building blocks. Digital circuits have been taking advantage of CMOS technology scaling in terms of speed, power consumption, and cost, while the techniques running behind the analog signal processing are still lagging. To decrease this historical gap, there has been an increasing trend in finding alternative IC design strategies to implement typical analog functions exploiting Digital in-Concept Design Methodologies (DCDM). This idea of re-thinking analog functions in digital terms has shown that Analog ICs blocks can also avail of the feature-size shrinking and energy efficiency of new technologies. This thesis deals with the development of DCDM, demonstrating its compatibility for Ultra-Low-Voltage (ULV) and Power (ULP) IoT applications. This work proves this statement through the proposing of new digital-based analog blocks, such as an Operational Transconductance Amplifiers (OTAs) and an ac-coupled Bio-signal Amplifier (BioAmp). As an initial contribution, for the first time, a silicon demonstration of an embryonic Digital-Based OTA (DB-OTA) published in 2013 is exhibited. The fabricated DB-OTA test chip occupies a compact area of 1,426 µm2 , operating at supply voltages (VDD) down to 300 mV, consuming only 590 pW while driving a capacitive load of 80pF. With a Total Harmonic Distortion (THD) lower than 5% for a 100mV input signal swing, its measured small-signal figure of merit (FOMS) and large-signal figure of merit (FOML) are 2,101 V −1 and 1,070, respectively. To the best of this thesis author’s knowledge, this measured power is the lowest reported to date in OTA literature, and its figures of merit are the best in sub-500mV OTAs reported to date. As the second step, mainly due to the robustness limitation of previous DB-OTA, a novel calibration-free digital-based topology is proposed, named here as Digital OTA (DIG OTA). A 180-nm DIGOTA test chip is also developed exhibiting an area below the 1000 µm2 wall, 2.4nW power under 150pF load, and a minimum VDD of 0.25 V. The proposed DIGOTA is more digital-like compared with DB-OTA since no pseudo-resistor is needed. As the last contribution, the previously proposed DIGOTA is then used as a building block to demonstrate the operation principle of power-efficient ULV and ultra-low area (ULA) fully-differential, digital-based Operational Transconductance Amplifier (OTA), suitable for microscale biosensing applications (BioDIGOTA) such as extreme low area Body Dust. Measured results in 180nm CMOS confirm that the proposed BioDIGOTA can work with a supply voltage down to 400 mV, consuming only 95 nW. The BioDIGOTA layout occupies only 0.022 mm2 of total silicon area, lowering the area by 3.22X times compared to the current state of the art while keeping reasonable system performance, such as 7.6 Noise Efficiency Factor (NEF) with 1.25 µVRMS input-referred noise over a 10 Hz bandwidth, 1.8% of THD, 62 dB of the common-mode rejection ratio (CMRR) and 55 dB of power supply rejection ratio (PSRR). After reviewing the current DCDM trend and all proposed silicon demonstrations, the thesis concludes that, despite the current analog design strategies involved during the analog block development

Fig: a) analog design octagon; b) gm/ID·fT versus the inversion coefficient IC, λc is the parameter corresponding to the fraction of the channel in which the carrier drift velocity reaches the saturated velocity over a portion of the channel geometrical length; c) Performance difference between analog and digital blocks over time; d) Area reduction over the years of the bitcell SRAM, OTA and bandgap reference

May 26, 2023

[paper] Chip-Chat

Jason Blocklove, Siddharth Garg, Ramesh Karri, and Hammond Pearce^
Chip-Chat: Challenges and Opportunities in Conversational Hardware Design
arXiv preprint arXiv:2305.13243 [cs.LG] 22 May 2023

New York University, NY USA
^University of New South Wales Sydney, Australia

Abstract: Modern hardware design starts with specifications provided in natural language. These are then translated by hardware engineers into appropriate Hardware Description Languages (HDLs) such as Verilog before synthesizing circuit elements. Automating this translation could reduce sources of human error from the engineering process. But, it is only recently that artificial intelligence (AI) has demonstrated capabilities for machine-based end-to-end design translations. Commercially available instruction-tuned Large Language Models (LLMs) such as OpenAI’s ChatGPT and Google’s Bard claim to be able to produce code in a variety of programming languages; but studies examining them for hardware are still lacking. In this work, we thus explore the challenges faced and opportunities presented when leveraging these recent advances in LLMs for hardware design. Using a suite of 8 representative benchmarks, we examined the capabilities and limitations of the state of the art conversational LLMs when producing Verilog for functional and verification purposes. Given that the LLMs performed best when used interactively, we then performed a longer, fully conversational case study where a hardware engineer co-designed a novel 8-bit accumulator-based microprocessor architecture. We sent the benchmarks and processor to tapeout in a Skywater 130nm shuttle, meaning that these ‘Chip-Chats’ resulted in what we believe to be the world’s first wholly-AI-written HDL for tapeout.
Fig: Processor synthesis information - Above (a) Components. Left: (b) Final processorGDS render by ‘kLayout’, I/O ports on left side, grid lines = 0.001 um.

Opportunities: Still, when the human feedback is provided to the more capable ChatGPT-4 model, or it is used to co-design, the language model seems to be a ‘force multiplier’, allowing for rapid design space exploration and iteration. In general, ChatGPT-4 could produce functionally correct code, which could free up designer time when implementing common modules. Potential future work could involve a larger user study to investigate this potential, as well as the development of conversational LLMs specific to hardware design to improve upon the results.

[paper] integrated PD SOI CMOS microcantilever biosensor

Yi Liu, Yuan Tian, Cong Lin, Jiahao Miao & Xiaomei Yu*
A monolithically integrated microcantilever biosensor 
based on partially depleted SOI CMOS technology
Microsystems & Nanoengineering volume 9, Article number: 60 (2023)
DOI: 10.1038/s41378-023-00534-y

* School of Integrated Circuits, Peking University, National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Beijing, 100871, China

Abstract: This paper presents a monolithically integrated aptasensor composed of a piezoresistive microcantilever array and an on-chip signal processing circuit. Twelve microcantilevers, each of them embedded with a piezoresistor, form three sensors in a Wheatstone bridge configuration. The on-chip signal processing circuit consists of a multiplexer, a chopper instrumentation amplifier, a low-pass filter, a sigma-delta analog-to-digital converter, and a serial peripheral interface. Both the microcantilever array and the on-chip signal processing circuit were fabricated on the single-crystalline silicon device layer of a silicon-on-insulator (SOI) wafer with partially depleted (PD) CMOS technology followed by three micromachining processes. The integrated microcantilever sensor makes full use of the high gauge factor of single-crystalline silicon to achieve low parasitic, latch-up, and leakage current in the PD-SOI CMOS. A measured deflection sensitivity of 0.98 × 10−6 nm−1 and an output voltage fluctuation of less than 1 μV were obtained for the integrated microcantilever. A maximum gain of 134.97 and an input offset current of only 0.623 nA were acquired for the on-chip signal processing circuit. By functionalizing the measurement microcantilevers with a biotin-avidin system method, human IgG, abrin, and staphylococcus enterotoxin B (SEB) were detected at a limit of detection (LOD) of 48 pg/mL. Moreover, multichannel detection of the three integrated microcantilever aptasensors was also verified by detecting SEB. All these experimental results indicate that the design and process of monolithically integrated microcantilevers can meet the requirements of high-sensitivity detection of biomolecules.

FIG: a) Micrograph of the fabricated integrated microcantilever sensor IC.
b) SEM photograph of the microcantilever array

Acknowledgements: This research was funded by the National Natural Science Foundation of China (Grant No. 61935001).

Open Access: this article is licensed under a Creative Commons Attribution 4.0 International License 

May 23, 2023

[paper] Schottky Barrier FET at Deep Cryogenic Temperatures

Christian Roemer1,2, Nadine Dersch1, Ghader Darbandy1, Mike Schwarz1,
Yi Han3, Qing-Tai Zhao3, Benjamın Iniguez2 and Alexander Kloes1
Compact Modeling of Schottky Barrier Field-Effect Transistors 
at Deep Cryogenic Temperatures
EUROSOI-ULIS 2023
in Tarragona (Catalonia, Spain) on May 10-12 2023

1 NanoP, TH Mittelhessen - University of Applied Sciences, Giessen, Germany
2 DEEEA, Universitat Rovira i Virgili, Tarragona, Spain
3 Peter-Grunberg-Institute (PGI 9), Forschungszentrum Julich, Germany


Abstract: In this paper, a physics-based DC compact model for Schottky barrier field-effect transistors at deep cryogenic temperatures is presented. The model uses simplified tunneling equations at temperatures of ϑ ≈ 0 K in order to calculate the field emission injection current at the device’s Schottky barriers. The compact model is also compared to and verified by measurements of ultra-thin body and buried oxide SOI Schottky barrier field-effect transistors and is able to capture the signature of resonant tunneling effects in the transfer characteristics.

FIG: Band diagram at the source side Schottky junction (left-hand side). The solid blue line is the conduction band of the channel and the blue dashed line shows the metal’s Fermi energy level. The right-hand side subplot shows the tunneling probability, with the exponential part (red line) and the total probability, including the oscillations (green line).



[paper] GaN HEMTs: Past, development, and future

Haorui Luoab, Wenrui Huaa, Yongxin Guoab,
On large-signal modeling of GaN HEMTs: Past, development, and future
Chip, 2023, 100052
DOI: 10.1016/j.chip.2023.100052.
a Department of Electrical and Computer Engineering, National University of Singapore
b National University of Singapore (Suzhou) Research Institute, China

Abstract : In the past few decades, circuits based on gallium nitride high electron mobility transistor (GaN HEMT) have demonstrated exceptional potential in a wide range of high-power and high-frequency applications, such as the new generation mobile communications, object detection, consumer electronics, etc. As a critical intermediary between GaN HEMT devices and circuit-level applications, GaN HEMT large-signal models play a pivotal role in the design, application and development of GaN HEMT devices and circuits. This review provides an in-depth examination of the advancements in GaN HEMT large-signal modeling in recent decades. Detailed and comprehensive coverage of various aspects of GaN HEMT large-signal model are offered, including large-signal measurement setups, classical formulation methods, model classification, non-ideal effects, etc. In order to better serve follow-up research, this review also explores potential future directions for the development of GaN HEMT large-signal modeling.
FIG : Timeline of some typical GaN HEMT large-signal models.

Funding : This work was supported in part by the National Research Foundation (NRF) of Singapore under Grant NRF-CRP17-2017-08.


May 22, 2023

Postdoc position in GaN power devices


The POWERlab (https://powerlab.epfl.ch) at EPFL is looking for excellent and motivated candidates to work on new concepts for power electronic devices based on GaN heterostructures. The candidate will pursue novel ideas related to concepts developed in our laboratory, for example [1]. The candidate will have the opportunity to work on several aspects involved in demonstrating high-performance power devices (cleanroom fabrication, device simulation and characterization) relying on the excellent facilities in our laboratory and at EPFL. Most importantly, the candidate is encouraged to try new ideas and approaches.

Profile: The candidate is expected to have a solid theoretical background in semiconductors and experience in cleanroom fabrication of GaN electronic devices, with strong aptitude to perform experiments, explore new concepts, and communicate his/her findings in high-quality scientific publications.

What is offered: The selected candidate will be offered a fellowship with very competitive salary and excellent conditions to excel in his/her research.

How to apply: If you are interested, and have the correct profile for this position, please send your CV to elison.matioli@epfl.ch, including publication list and names of two references.

REF:
[1] L. Nela, J. Ma, C. Erine, P. Xiang, T.-H. Shen, V. Tileli, T. Wang, K. Cheng and E. Matioli, “Multi-channel nanowire devices for efficient power conversion” Nature Electronics, 4, 284–290, (2021)

May 17, 2023

[chapter] Systematic Design of Analog CMOS Circuits with Lookup Tables

Systematic Design of Analog CMOS Circuits with Lookup Tables
By Paul G. A. Jespers, Université Catholique de Louvain, Belgium

in Foundations and Trends in Integrated Circuits and Systems
Vol. 2: No. 3, pp 193-243. http://dx.doi.org/10.1561/3500000004

Publication Date: 08 May 2023
© 2023 P. G. A. Jespers*

ABSTRACT The idea underlying the methodology described in this monograph consists in the use of a set of Lookup Tables embodying device data extracted prior from systematic runs done once and for all using an advanced circuit simulator, the same as used for final design verifications. In this way, all parameters put to use during the sizing procedure incorporate not only the bearings of bias conditions and geometry, but also every second-order effect present in the simulator’s model, in particular short-channel effects. Consequently, the number of verification simulations one has to perform is not only substantially reduced, but the designer may concentrate on actual design strategies without being bothered by inconsistencies caused by poor models or inappropriate parameters.

Fig: The drain current ID versus the gate-to-source voltage VGS (plain lines) compared to the EKV best fit (+). The other lines represent the exponential and quadratic approximations.

∗The author acknowledges the kind support of Prof. Boris Murmann in writing this monograph.

May 11, 2023

OpenPDK Networking Workshop


OpenPDK, OpenTooling and Open Source Design
An Initiative to Push Development
Date:
Networking Workshop FMD-QNC on 27-28 June 2023
Location:
IHP; Im Technologiepark 25; 15236 Frankfurt (Oder)
Contact:
Sergei Andreev; Phone: +49 335 5625 523
Free Registration: 




The workshop is organised by IHP and FMD (Research Fab Microelectronics Germany) within the framework of the FMD-QNC Project.

Within the project FMD-QNC analog circuit design with open source software shall be enabled. For this purpose, both the open source design tools and a process design kit of the semiconductor technology used must support the entire design flow with sufficient quality. IHP provides its 130 nm BiCMOS technology SG13G2 for open source design. This technology is particularly suited for high frequency and mixed signal design applications. While basic tool support already exists for digital circuit design, it is still very rudimentary for analog designs and especially for high frequency designs. A considerable effort has to be put into the development of the design tools as well as into the creation of the technology specific Process Design Kit (PDK).

The 2-day workshop is intended to promote exchange and networking between tool developers, the PDK developers at IHP and designers. Tool developers are to present the capabilities of the tools as well as planned enhancements. Designers are to present ideas that can be used for training chip designers. Requirements for open source design tools for digital design, mixed signal design, and high frequency design are to be highlighted.

Discussions will identify and prioritize gaps for a complete design flow in the open source tools and PDK. The workshop will thus help to concrete the planning for the Open Design Platform and to create a roadmap for future work.

Presentation

Presenter/Institution

Timeline

Day 1

Welcome by coordinator FMD-QNC

Dr. Andreas Bruning
Research Fab Microelectronics Germany

9:00-9:10

Introduction FMD-QNC project status and IHP OpenPDK Roadmap

Dr. Rene Scholz
IHP

9:10-9:30

Status OpenPDK and OpenTooling for SG13G2 BiCMOS technology

Sergei Andreev
IHP

9:30-10:00

An Ultra-Low-Power High-Density Wireless Biomedical Sensing System

 

Prof. Harald Pretl
Johannes Kepler University Linz

10:00-10:30

Teaching digital design by using open-source EDA tools

Prof. Steffen Reith
Rhein Main University of Applied Sciences

10:30-11:00

Coffee break

11:00-11:40

CMOS Rail-to-Rail Operational Amplifier for HPGe Radiation Detector

Prof. Herman Jalli Ng
Karlsruhe University of Applied Sciences

11:40-12:10

Design-flow approaches for mmWave and sub-THz integrated transceiver circuits for radar and communication

Sasha Breun
FAU Erlangen

 

12:10-12:40

Lunch break 

12:40-13:40

TBD

Dr. Frank K. Gurkaynak
ETH Zurich

13:40-14:10

TBD

Joachim Hebeler
Karlsruhe Institute of Technology

14:10-14:40

Coffee break

14:40-15:10

 TBD

Prof.  Dietmar Kissinger
Ulm University

15:10-15:40

LibMan - an easy way to manage your open source design flow

Dr. Anton Datsuk
IHP

15:40-16:10

Get together (Barbecue)

 

17:00-…

Day 2

ngspice - status and future developments

Prof. Holger Vogt

9:00-9:20

DMT - Python Toolkit for Device Modeling

Mario Krattenmacher
SemiMod

9:20-9:40

OpenVAF - Next Generation Verilog-A Compiler with ngspice integration

Mario Krattenmacher
SemiMod

9:40-10:00

Coffee break

10:00-10:40

Best practices for implementing and optimizing KLayout DRC and LVS decks

Matthias Köfferlein


10:40-11:00

Generating DRC and LVS Runsets for KLayout

Dr. Andreas Krinke
TU Dresden

11:00-11:20

OpenEMS in open source EDA

Jan Taro Svejda
University of Duisburg-Essen

11:20-11:40

Lunch break

11:40-12:40

Panel discussion on the roadmap – open source tools for IC design

Topics:

  • Digital design flow
  • Analog design flow
  • Challenges in RF design

Dr. Norbert Herfurth
IHP

Panelists: TBD

12:40-14:10

May 10, 2023

ECME 2023: deadline for abstract submission


 

Dear Colleague, 

as you may know, the 16th European Conference of Molecular Electronics (ECME) will be held in Bari (Italy) on 2-6 October 2023 in the beautiful venue of the Municipal Theatre Niccolò Piccinni (https://www.ecme2023.eu/). 

This mail is to kindly invite you to submit your contribution to ECME-2023 by May 24, 2023.


Over the years, ECME has become the premier European Conference in the field of Molecular Electronics, and ECME 2023 will continue the prestigious series of biannual conferences previously organized in Italy (Padua, 1992), Germany (Kloster Banz, 1994), Belgium (Leuven, 1996), UK (Cambridge, 1997), Sweden (Linköping, 1999), The Netherlands (Rolduc, 2001), France (Avignon, 2003), Italy (Bologna, 2005), France (Metz, 2007), Denmark (Copenhagen, 2009), UK (London, 2013), France (Strasburg, 2015), Germany (Dresden, 2017), Sweden (Linköping, 2019).

 
The conference will cover all areas related to molecular-organic and plastic electronics including chemistry, physics, biology, materials science, nanoscience, engineering, device fabrication, and commercialization. 

You will also have the chance to enjoy your stay in the beautiful city of Bari, the capital of the Apulia region (https://www.italia.it/en/puglia/bari). The conference venue is right in the city center directly connected to the international airport and very close to the medieval quarter called "Bari vecchia". Bari is not only rich in monuments, medieval churches, and cultural sites, but holds one of the most beautiful and long promenades in Italy overlooking a wonderful clear sea, all at walking distance from the conference venue. Walking through the streets of Bari means appreciating not only the local culture, history, art, and architecture but also the local cuisine served in any restaurants, trattoria, osteria, or else enjoying the typical humble street food, such as focaccia and panzerotti. 

We are looking forward to welcoming you to Bari,

Luisa Torsi and Gianluca Farinola

(ECME 2023 Chairpersons) 

May 8, 2023

[EDS MQ/DL] The Transistor Turns 75

The Transistor Turns 75
A Forward Look to Challenges and Opportunities


A series of IEEE EDS Distinguished Lecturer talks on topics in current transistor and electron device research, reflecting on the challenges ahead and the rewards inherrent in overcomming them.

  DATE AND TIME LOCATION HOSTS REGISTRATION
Date: 02 Jun 2023
Time: 08:30 AM to 05:30 PM

All times are (UTC+00:00) Edinburgh
Moller Institute
Cambridge, England UK
CB3 ODE

Click here for Map
UK and Ireland Section Chapter, ED15

Contact Host
Starts 19 April 2023 06:00 AM
Ends 30 May 2023 06:30 PM
All times are (UTC+00:00) Edinburgh

No Admission Charge

Register Now

EDS DL SPEAKERS
  • Benjamin Iniguez: Modeling 2D Semiconductor Devices
  • Lluis Marsal: Organic Photovoltaics: Opportunities and Challenges
  • Arokia Nathan: 
  • Fernando Guarin: 75th Anniversary of the Transistor Semiconductor Industry Perspective
  • Edmundo A. Gutierrez-D.: DC and RF reliability of advanced bulk and SOI CMOS technologies
  • Merlyne De Souza: Challenges to Edge computing: an era beyond silicon CMOS
  • Samar Saha: 
  • MK Radhakrishnan: Birth and Evolution of Transistor and Its Impact on Humanity
  • Xiaojun Guo: Transistor Technologies for Hybrid Integration at Micro- and Macro-scales
  • Hiroshi Iwai: Present status and future of the nanoelectronics technology