Aug 6, 2015

Best Practices for Compact Modeling in Verilog-A

Mcandrew, C.C.; Coram, G.J.; Gullapalli, K.K.; Jones, J.R.; Nagel, L.; Roy, A.S.; Roychowdhury, J.; Scholten, A.J.; Smit, G.D.J.; Wang, X.; Yoshitomi, S., "Best Practices for Compact Modeling in Verilog-A," Electron Devices Society, IEEE Journal of the , vol.PP, no.99, pp.1,1

doi: 10.1109/JEDS.2015.2455342

Abstract: Verilog-A is the de facto standard language that the semiconductor industry uses to define compact models. Unfortunately, it is easy to write models poorly in Verilog-A, and this can lead to unphysical model behavior, poor convergence, and difficulty in understanding and maintaining model codes. This paper details best practices for writing compact models in Verilog-A, to try to help raise the quality of compact modeling throughout the industry.

keywords: Capacitance, Computational modeling, Convergence, Hardware design languages, Integrated circuit modeling, Mathematical model, Numerical models

[read more...]

REFERENCES[1] S. Liu, K. C. Hsu, and P. Subramaniam, “ADMIT-ADVICE modeling interface tool,” Proc. IEEE Customs Integrated Circuits Conf., pp. 6.6.1- 6.6.4, 1988.
[2] M. Vlach, “Modeling and simulation with Saber,” Proc. 3rd Annual ASIC Seminar and Exhibit, pp. T11.1-T11.9, 1990.
[3] E. McReynolds, personal communication, circa 1995.
[4] E. Christen and K. Bakalar, “VHDL-AMS—A hardware description language for analog and mixed-signal applications,” IEEE Trans. Circuits and Systems II, vol. 46, no. 10, pp. 1263-1272, Oct. 1999.
[5] [Online]: http://www.accellera.org/downloads/standards/v-ams (accessed June, 2015).
[6] L. Lemaitre, G. Coram, C. McAndrew, and K. Kundert, “Extensions to Verilog-A to support compact device modeling,” Proc. IEEE Behavioral Modeling and Simulation Workshop, pp. 134-138, Oct. 2003.
[7] L. Zhou, B. P. Hu, B. Wan, and C.-J. R. Shi, “Rapid BSIM model implementation with VHDL-AMS/Verilog-AMS and MCAST compact
model compiler,” IEEE Int. SOC Conf., pp. 285-286, Sep. 2003.
[8] G. Coram and M. Ding, “Recent achievements in Verilog-A compact modeling,” MOS-AK Workshop, Dec. 2009.
[9] G. Coram, “How to (and how not to) write a compact model in Verilog- A,” Proc. IEEE Behavioral Modeling a Simulation Workshop, pp. 97-106, Oct. 2004.
[10] G. Coram and C. C. McAndrew, “Verilog-A for compact modeling: best practices for high-quality model authoring,” Workshop on Compact Modeling for RF, Sep. 2005.
[11] G. Coram, “Verilog-A: an introduction for compact modelers,” MOS-AK Workshop, Sep. 2006.
[12] M. Mierzwinski, P. O’Halloran, and B. Troyanovsky, “Developing and releasing compact models using Verilog-A,” MOS-AK Workshop, Dec. 2008.
[13] G. Depeyrot and F. Poullet, “Guidelines for Verilog-A compact model coding,” MOS-AK Workshop, Sep. 2009.
[14] M. Mierzwinski, P. O’Halloran, and B. Troyanovsky, “Practical considerations for developing, debugging, and releasing Verilog-A models,” MOS-AK Workshop, Dec. 2009.
[15] C. C. McAndrew and G. Coram, “General and junction primitives for Verilog-A compact models,” nanoHUB. doi:10.4231/D3G15TC2J, 2015.
[16] C. C. McAndrew, “R3,” nanoHUB. doi:10.4231/D3QB9V64G, 2014.
[17] L. W. Nagel, SPICE2: A Computer Program to Simulate Semiconductor Circuits, Memo. ERL-M520, Univ. California, Berkeley, May 1975.
[18] X. Li, W. Wu, G. Gildenblat, C. C. McAndrew, and A. J. Scholten, “Benchmark tests for MOSFET compact models,” in Compact Modeling: Principles, Techniques and Applications, G. Gildenblat (Ed), Springer, pp. 75-104, 2010
[19] Y. Tsividis and C. McAndrew, Operation and Modeling of the MOS Transistor, 3rd ed., New York: Oxford University Press, 2011.
[20] [Online]: http://physics.nist.gov/cuu/Constants/Citations/Search.html (accessed June, 2015)
[21] A. Parker, “Getting to the heart of the matter,” IEEE Microwave Magazine, vol. 16, no. 3, pp. 76-86, Apr. 2015. [22] H. K. Dirks, Kapazit¨atskoeffizienten nichtlinearer dissipativer Systeme, Habilitation Theses, RWTH Aachen University, 1998.
[23] A. C. T. Aarts, R. van der Hout, J. C. J. Paasschens, A. J. Scholten, M. B. Willemsen, and D. B. M. Klaassen, “New fundamental insights into capacitance modeling of laterally nonuniform MOS devices,” IEEE Trans. Electron Dev., vol. 53, no. 2, pp. 270-278, Feb. 2006.
[24] C. C. McAndrew, “Practical modeling for circuit simulation,” IEEE J. Solid-State Circuits, vol. 33, no. 3, pp. 439-448, Mar. 1998.
[25] C. C. McAndrew, “Useful numerical techniques for compact modeling,” Proc. IEEE ICMTS, pp. 121-126, Apr. 2002. [26] K. Kundert, “Hidden state in SpectreRF,” [Online]: http://http://www.designers-guide.org/analysis/hidden-state.pdf (accessed June, 2015)
[27] R. K. Johnson, The Elements of MATLAB R⃝ Style, Cambridge University Press, 2011.
[28] M. Driessen and D. B. M. Klaassen, personal communication, 2006.
[29] [Online]: https://nanohub.org/groups/needs (accessed June, 2015)
[30] L. Lemaitre, C. C. McAndrew, and S. Hamm, “ADMS-automated device model synthesizer,” Proc. IEEE CICC, pp. 27-30, May 2002.
[31] [Online]: http://sourceforge.net/projects/mot-adms/ (accessed June, 2015)

Jul 10, 2015

Octave-Forge Community Choice POTM

The Octave-Forge packages -- Community Choice Project of the Month for July

For one of the July "Community Choice" Projects of the Month, the community elected Octave-Forge, a central location for the collaborative development of packages for GNU Octave, a high-level interpreted language. The Octave-Forge packages expand Octave's core functionality by providing field specific features via Octave's package system. Some of the individual Octave-Forge packages include: image and signal processing, fuzzy logic, instrument control, and statistics packages.

Download Octave-Forge now.

Related Projects:

Jun 30, 2015

Analog CMOS from 5 micrometer to 5 nanometer

 Sansen, W., "1.3 Analog CMOS from 5 micrometer to 5 nanometer," ISSCC 2015 IEEE International , vol., no., pp.1,6, 22-26 Feb. 2015 doi: 10.1109/ISSCC.2015.7062848 
Abstract: In our future, as usual, analog designers will continue to expand their expertise and knowledge in response to changing needs. While devices will change their nature and operate at higher and higher frequencies, their I-V characteristics will remain similar. In the near term, increased speed of MOS circuits, will be reached by operating deeper in weak inversion. Offset and 1/f noise will continue to play a critical role. Thus, in general, it seems that analog expertise is insensitive to technology change.
[read more]

Jun 29, 2015

QUCS: Project of the Week, June 1, 2015

 The Qucs is one of the featured projects for the week (June 1, 2015), which appear on the front page of SourceForge.net:

 Qucs is a circuit simulator with a graphical user interface. The software aims to support all kinds of circuit simulation types such as, e.g. DC, AC, S-parameter, Transient, Noise, and Harmonic Balance analysis. Pure digital simulations are also supported.
[ Download Quite Universal Circuit Simulator ]

Jun 17, 2015

3rd Training Course on Compact Modeling

 3rd TCCM, 
 organized as IEEE EDS Mini-Colloquium 
 (http://eds.ieee.org/lectures.html?eid=136)

Co-organizer: Institute of Electron Technology, Warsaw, Poland
Technical Program Promoter: DMCS, Lodz University of Technology, Łódź, Poland

Date: June 24, 2015.
Place: Hotel Bulwar (Lejda room) ul. Bulwar Filadelfijski 18, 87-100 Toruń, Poland
www: http://www.hotelbulwar.pl

Final schedule of TCCM:
9:00 Wladek Grabinski, Opening
9:10 Henryk Przewłocki, "Weaknesses and corrections of the classical theory of photoelectric phenomena in the MOS system"
10:00 Juin J.Liou, "Compact Modeling of Junction Failure in Semiconductor Devices Subject to Electrostatic Discharge Stresses"
10:50 Coffee break
11:10 Jean-Michel Sallese, "Modeling Junctionless Field Effect Transistors"
12:00 Mike Brinson, "A unified approach to compact device modelling with the open source packages Qucs/ADMS and MAPP/Octave"
13:00 Lunch
14:30 Benjamin Iniguez, "Physically-Based Compact Modeling of GaN HEMT"
15:20 Wladek Grabinski, "Verilog-A Compact Model Standardization"
16:10 Daniel Tomaszewski, "Compact modeling and statistical modeling for parametric yield improvement"
17:00 Wladek Grabinski, Closing

Jun 12, 2015

Micro&Nano 2015 - 2nd Announcement

6th Micro & Nano Conference on Micro - Nanoelectronics, Nanotechnologies and MEMs
4-7 October, 2015, Athens, Greece

http://conference-micronano2015.micro-nano.gr
Second Announcement

The "Micro&Nano 2015" Conference will be held at the Fenix Hotel, in Glyfada, Athens, Greece. The Best Western Hotel Fenix is conveniently located in Glyfada, an attractive resort in the south coast of Athens. More details on the Conference venue can be found on the conference website:
<http://conference-micronano2015.micro-nano.gr>

Conference Topics:
  • Micro and Nano- Fabrication
  • Materials for Electronics, Photonics and Sensors
  • Electronic, Optoelectronic and Photonic Devices
  • Sensors and Actuators
All abstracts should not exceed the limit of 300 words. Please follow the abstract template that can be found here. The deadline for abstract submission is on 30 June 2015.

The Conference abstracts will be published in the "Abstract Book" that will be distributed to all the participants, at the beginning of the Conference. Selected papers will be published, after peer-review, in special issues of the following international journals:
  • Nanoscale Research Letters (the nanoscience related articles)
  • Microelectronic Engineering
[read more: http://conference-micronano2015.micro-nano.gr]

May 15, 2015

[mos-ak] [2nd Announcement and Call for Papers] Autumn 2015 MOS-AK Workshop at ESSDERC/ESSCIRC

 Autumn 2015 MOS-AK Workshop at ESSDERC/ESSCIRC
Graz (A) September 18, 2015
2nd Announcement and Call for Papers

Together with the MOS-AK Workshop Scientific Program Coordinators Larry Nagel and Andrei Vladimirescu, local workshop chairs Benjamin Iniguez, URV (SP) and Jean-Michel Sallese, EPFL (CH) as well as Extended MOS-AK TPC Committee, we have pleasure to invite to the MOS-AK Workshop which will be held in Graz (A) at the ESSDERC/ESSCIRC Conference where also a joint modeling session (invited talks by Prof. C.C.Enz and Prof. C.Hu) as well as a session with regular modeling paper (and the invited talk by Prof. M.Lundstrom) are planed. Following MOS-AK workshop is organized with aims to strengthen a network and discussion forum among experts in the field, enhance open platform for information exchange related to compact/SPICE modeling and Verilog-A standardization, bring people in the compact modeling field together, as well as obtain feedback from technology developers, circuit designers, and CAD/EDA tool developers and vendors.

Venue:   
University of Technology,
Campus Inffeldgasse
Graz (A)

Important Dates:
  • Call for Papers - March 2015
  • 2nd Announcement - May 2015
  • Final Workshop Program - July 2015
  • MOS-AK Workshop - Sept.18, 2015
    • 08:30 - 09:00 - On-site Registration
    • 09:00 - 10:30 - Morning MOS-AK Session
    • 11:00 - 12:00 - CM Standardization Pannel
    • 12:00 - 13:00 - Lunch
    • 13:00 - 16:00 - Afternoon MOS-AK Session
Topics to be covered include the following:
  • Advances in semiconductor technologies and processing
  • Compact Modeling (CM) of the electron devices
  • Verilog-A language for CM standardization
  • New CM techniques and extraction software
  • Open Source TCAD/EDA modeling and simulation
  • CM of passive, active, sensors and actuators
  • Emerging Devices, CMOS and SOI-based memory cells
  • Microwave, RF device modeling, high voltage device modeling
  • Nanoscale CMOS devices and circuits
  • Technology R&D, DFY, DFT and IC Designs
  • Foundry/Fabless Interface Strategies
Online Abstract Submission:
Authors should submit an abstract using on-line MOS-AK submission form
(any related inquiries can be sent to abstracts@mos-ak.org)
http://www.mos-ak.org/graz_2015/abstracts.php

Free online workshop registration:
(any related inquiries can be sent to register@mos-ak.org)
http://www.mos-ak.org/graz2015/registration.php

Postworkshop publications:
Selected best MOS-AK technical presentation will be recommended for further publication in a special issue of the International Journal of High Speed Electronics and Systems

Extended MOS-AK Committee

WG052015

--
You received this message because you are subscribed to the Google Groups "mos-ak" group.
To unsubscribe from this group and stop receiving emails from it, send an email to mos-ak+unsubscribe@googlegroups.com.
To post to this group, send email to mos-ak@googlegroups.com.
Visit this group at http://groups.google.com/group/mos-ak.
For more options, visit https://groups.google.com/d/optout.